§03. Spaltenvektoren

1. Koordinatendarstellung

Man schreibt: $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, falls \vec{a} in der Ebene bzw. $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, falls \vec{a} im Raum liegt.

 a_1 , a_2 , a_3 heißen die Koordinaten von \vec{a} .

Rechenregeln:

Beispiel: Berechne $3\vec{a} - 2\vec{b}$ mit $\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 0 \\ -6 \\ 5 \end{pmatrix}$

$$3\vec{a} - 2\vec{b} = 3 \cdot \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} - 2 \cdot \begin{pmatrix} 0 \\ -6 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 & -0 \\ -6 + 12 \\ 9 & -10 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ -1 \end{pmatrix}$$

2. Verbindungsvektoren

Verbindet man 2 Punkte A($a_1|a_2|a_3$) und B($b_1|b_2|b_3$) zu einem Vektor \overrightarrow{AB} , dann errechnet man den Verbindungsvektor über die Koordinaten der Punkte A und B:

$$\overrightarrow{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix}$$

Beispiel: A(1|-2|3) B(-3|0|6)

$$\overrightarrow{AB} = \begin{pmatrix} -3 - 1 \\ 0 + 2 \\ 6 - 3 \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix}$$

Der Verbindungsvektor vom Ursprung O zu einem Punkt A ($a_1|a_2|a_3$) heißt Ortsvektor \overrightarrow{OA} des Punktes A:

$$\overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

© H. Drothler 2025 <u>www.drothler.net</u>