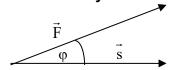
§04. Das Skalarprodukt

1. Betrag eines Vektors:

Unter dem Betrag eines Vektors \vec{a} versteht man die Maßzahl der Länge eines seiner Repräsentanten.

Schreibweise: $|\vec{a}|$ (bzw. als Verbindungsvektor der Punkte A und B: $|\overrightarrow{AB}|$)

2. Beispiel aus der Physik



W = $F \cdot s \cdot \cos \varphi$ (Arbeit = Betrag der Kraft mal Weglänge mal Kosinus des Zwischenwinkels φ)

Verknüpfung der Vektoren \vec{F} und \vec{s} führt zum Skalar (Zahl) W

3. Definition:

Die Verknüpfung der Vektoren \vec{a} , \vec{b}

 $\vec{a} \circ \vec{b} = |a| \cdot |\vec{b}| \cdot \text{b} \cdot \cos \varphi \text{ (mit } 0^{\circ} \le \varphi \le 180^{\circ}),$

die jedem Vektorpaar eine reelle Zahl zuordnet, nennt man Skalarprodukt.

4. Skalarprodukt in Koordinatenschreibweise:

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1 b_1 + a_2 b_2$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Beispiele:

$$\begin{pmatrix} 5 \\ 5 \\ -1 \end{pmatrix} \circ \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = 10 + 5 - 3 = 12$$

$$\binom{1}{2} \circ \binom{1}{2} = 1^2 + 2^2 = 5$$

Es gilt für die Länge (den Betrag) eines Vektors: $|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$

Es gilt für die Länge $|\overline{AB}|$ einer Strecke \overline{AB} : $|\overline{AB}| = |\overline{AB}| = |\overline{B} - \overline{A}| = \sqrt{(\overline{B} - \overline{A}) \circ (\overline{B} - \overline{A})}$

<u>Beispiel:</u> Berechne die Länge der Strecke \overline{AB} (bzw. die Entfernung der Punkte A und B):

$$\overrightarrow{AB} = \begin{pmatrix} -3^{-1} \\ 0 + 2 \\ 6 - 3 \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix} \qquad |\overline{AB}| = \sqrt{(-4)^2 + 2^2 + 3^2} = \sqrt{29}$$

5. Winkel zwischen Vektoren

Formt man die Definition des Skalarprodukts um, so erhält man:

$$\cos\varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

- $ightharpoonup \phi$ nennt man den Zwischenwinkel der Vektoren \vec{a} und \vec{b} .
- lst ϕ = 90°, so sagt man: "Die Vektoren \vec{a} und \vec{b} stehen senkrecht aufeinander" oder " \vec{a} und \vec{b} sind orthogonal"
- Für zwei orthogonale Vektoren \vec{a} und \vec{b} gilt: \vec{a} o \vec{b} = 0
- ► Schneiden sich 2 Geraden so nennt man den kleinsten Winkel, den sie miteinander bilden *Schnittwinkel der Geraden*.

Beispiel

$$\vec{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}; \ \vec{b} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \Rightarrow \cos \phi = \frac{\begin{pmatrix} 3 \\ 4 \end{pmatrix} \circ \begin{pmatrix} 1 \\ -2 \end{pmatrix}}{\sqrt{3^2 + 4^2} \cdot \sqrt{1^2 + (-2)^2}} = \frac{3 - 8}{5 \cdot \sqrt{5}} = -\frac{5}{5 \cdot \sqrt{5}} = -\frac{1}{\sqrt{5}} \ \Rightarrow \phi = 116,57^\circ$$

© H. Drothler 2025 www.drothler.net