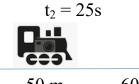

§0 Wiederholung wichtiger Begriffe


1. Strecke und Zeit

Größe:	Zeitpunkt
Symbol:	
Einheit:	

t 0s

x 0 m

10 m

20 m 30 m

40 m 50 m

60 m

Die Lok fährt vom Ort $x_1 = \underline{\hspace{1cm}}$ zum Ort $x_2 = \underline{\hspace{1cm}}$. Dabei legt sie eine bestimmte Strecke zurück.

Die _____, hier: _____

Die ______, hier: _____

Eine zurückgelegte Strecke _____ errechnet sich als _____ der _____,

eine Zeitspanne__ als ____ der ____.

Also: = | =

2. Geschwindigkeit

Der konstante Quotient aus Strecke und Zeitspanne heißt _____

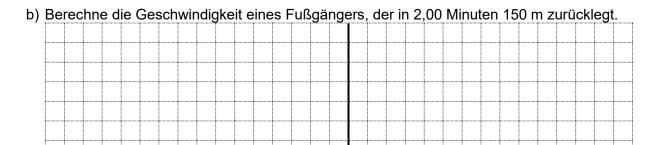
Größe:	
Symbol:	
Definitions- gleichung:	
Einheit:	

weitere Einheit:

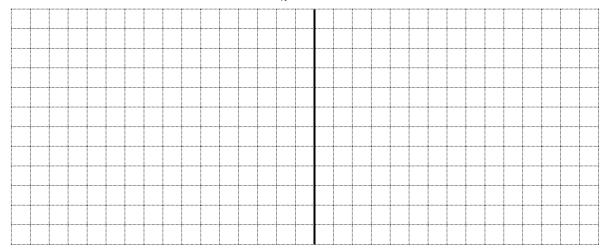
sprich:

<u>Umwandeln:</u>

Bewegt sich ein Körper mit ______,


so spricht man von einer ______.

Beispiele:


a) Wandle in die jeweils andere Einheit um:

→ km							1
$\frac{12}{h} =$							10 -
7.							

 $10\frac{m}{s} =$

c) Berechne die Strecke, die ein Auto in 30 Minuten zurücklegt, wenn es dabei eine gleichbleibende Geschwindigkeit von 54 $\frac{km}{h}$ hat.

3. Nicht-gleichförmige Bewegung

Ändert sich die Geschwindigkeit eines Körpers bei einer Bewegung um ______ in der Zeitspanne ______ , so wird der Körper _____ . Hier hat der Körper zu jedem Zeitpunkt eine andere Geschwindigkeit ().

Der Quotient aus der Geschwindigkeitsän			
derung	durch die dafür		
benötigte Zeitspanne	wird		
als	bezeichnet.		

Größe:	
Symbol:	
Definitions- gleichung:	
Einheit:	

Einwirkung von außen.

Die Stärke einer Einwirkung beschreibt man mit der physikalischen Größe Kraft. Die "Stärke" der Kraft nennt man den Betrag der Kraft.

Größe:	Betrag der Kraft
Symbol:	
Einheit:	

1cm

Eine Kraft mit dem Betrag F, die während der	_ auf einen Gegen-
stand der <i>Masse m</i> einwirkt, führt bei diesem zu einer	
Dabei entsteht folgender mathematischer Zusammenhang:	
Damit ergibt sich eine andere Einheit des Betrags der Kraft: [F] =	

5. Kraftpfeil

 -				
Die Kraft ist eine ger	ichtete Größe. Sie	e ist durch drei Bestimm	ungsstücke festge-	Beispiel 1N ≙ 1c
legt::			Gekennzeichnet	
wird sie mit einem _		Dieser zeigt	(
),	() und	
	(kleiner	am Fußp	unkt des Pfeils) an.	

© H. Drothler 2025 www.drothler.net

6. Newtonsche Gesetze

Erstes Gesetz von Newton (Trägheitssatz)

Wirkt auf einen Körper keine Kraft, so bleibt er in Ruhe oder bewegt sich mit konstanter Geschwindigkeit geradlinig weiter.

Beschleunigte Bezugssysteme (z.B. Anfahren eines Autos):

Von Straße aus beobachtet bleibt der Autofahrer in Ruhe, das Auto wird unter ihm nach vorne beschleunigt.

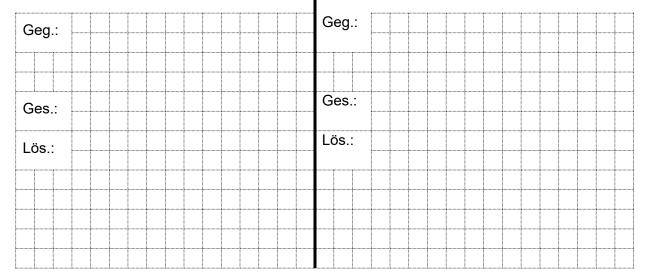
Im Auto spürt der Fahrer eine scheinbare Kraft, die ihn gegen die

Beschleunigungsrichtung drückt.

(Trägheitskraft)

Formt man die Gleichung $F \cdot \Delta t = m \cdot \Delta v$ um, dann ergibt sich:

$$F = \frac{\mathbf{m} \cdot \Delta \mathbf{v}}{\Delta \mathbf{t}} = \mathbf{m} \cdot \frac{\Delta \mathbf{v}}{\Delta \mathbf{t}} = \mathbf{m}$$
 a


Dieser Zusammenhang wird auch als 2.

Newtonsches Gesetz bezeichnet.

Zweites Gesetz von Newton (Bewegungssatz): Eine Kraft der Stärke F bewirkt bei einem Ge-
genstand der eine
Es gilt
dabei:

Beispiele:

- a) Berechne den Betrag der wirkenden Kraft, wenn ein PKW der Masse 1,2 t = 1200 kg mit 2,0 $\frac{m}{s^2}$ beschleunigt.
- b) Berechne die Masse, die beschleunigt wurde, wenn sich bei 300 N eine Beschleunigung von $5,0 \frac{m}{s^2}$ ergibt.

Drittes Gesetz von Newton (Wechselwirkungssatz)

Wirkt von einem Körper A eine Kraft $\overrightarrow{F_1}$ auf einen Körper B, so wirkt umgekehrt auch eine Kraft $\overrightarrow{F_2}$ von Körper B auf A. Die beiden Kräfte haben denselben Betrag und sind entgegengesetzt gerichtet.

Es gilt: $\overrightarrow{F_2} = -\overrightarrow{F_1}$ (actio gegengleich reacctio)

© H. Drothler 2025 www.drothler.net