
§1 Kreisbewegung

1. Beschreibung

Ein punktförmiger Körper K bewegt sich auf einer Kreisbahn mit Radius R um einen Punkt M.

Dabei bewegt er sich in der Zeitspanne Δt um den Winkel $\Delta \alpha$ weiter. (Winkel wird im Bogenmaß angegeben)

2. Winkelgeschwindigkeit und Frequenz

>	Der Quotient	ω =	wird als	 bezeichnet.

▶	Die Dauer für einen vollen Umlauf nennt man			_(Symbol:	·
	Betrachtet man einen vollen Umlauf, legt der Körper in der Zei	tspar	ne ∆	.t =	den
	Winkel $\Delta \alpha$ = (Bogenmaß für 360°) zurück und es gilt:	ω =			

► Den Quotienten aus der		_ und der	
	nennt man auch		_ (Symbol:).

Somit ergibt sich der Zusammenhang zwischen ω und f:	ω =	=	

3. Bahngeschwindigkeit

Der Quotient aus der auf der Kreisbahn zurückgelegten Strecke s und der dafür benötigten Zeit t wird als ______ (Symbol: ____) bezeichnet.

Für einen Umlauf legt der Körper einen Kreisumfang _____ zurück und benötigt dafür die Zeit T dafür.

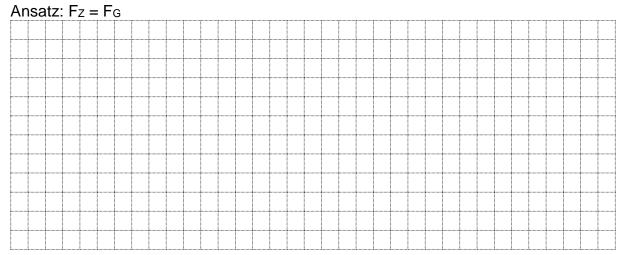
Also gilt:

Einsetzen von $\omega = \frac{2\pi}{T}$ ergibt:

4. Zentripetalkraft

Ursache für die Kreisbewegung ist eine Kraft auf K, die in Richtung des Mittelpunkts wirkt. Diese heißt Zentripetalkraft F_Z und ist abhängig von der Masse m des Körpers, seiner Winkelgeschwindigkeit ω und dem Radius r der Kreisbahn.

Es gilt:


Mit ergibt sich: , also gekürzt:

Beispiel Looping

Ein Wagen bleibt an der höchsten Stelle eines Loopings in der Bahn, wenn die durch Bahnradius r und Bahngeschwindigkeit v bestimmte Zentripetalkraft mindestens so groß wie die Gewichtskraft F_G des Körpers ist.

Bestimme einen Term für diese Bahngeschwindigkeit im höchsten Punkt B.

<u>Lösung:</u>

Weiterführende Materialien:

Video: <u>Looping eines Jaguars</u> (Weltrekord von 2017) Quiz: Quiz zur Kreisbewegung auf Leifi Physik

© H. Drothler 2025